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This paper discusses the effect of heterogeneities in cross-link density on network dynamics. The dy-
namic effects of such networks are studied in two limits, i.e., at short times and at long times. It is shown
that heterogeneities in cross-link density alter the chain dynamics strongly. This has several effects on
the segmental motion, ruled by an additional time scale that is set mainly by fluctuations in the cross-
link density. It is shown that the chains localize more strongly in the long-time limit as given in homo-
geneous rubbers. The localization of chains is essential for the dynamic response of networks. The col-
lective dynamics of the whole network is investigated by the use of a Forster transfer model, which en-
counters the heterogeneities on larger scales. This method has not been applied to networks previously
and leads to predictions on creep dynamics and long-time moduli.

PACS number(s): 36.20.—r, 61.41.+¢, 05.90.+m

L. INTRODUCTION

The effects of heterogeneities in cross-linked polymer
melts and rubbers have been recognized to be of great im-
portance in pure academic science and in technological
applications. These are generally difficult problems:
First, they have been ignored in all of the classical net-
work theories [1-3], which consider often very simple
approximations and very ideal (and so unrealistic) net-
works, which never appear in nature. Second, it has been
made evident to be of technological relevance for the ulti-
mate properties of networks [4]. Third, it is now believed
that heterogeneities have significant effects in small-
angle-neutron-scattering experiments [5]. First con-
siderations for studying the effect of heterogeneities in
swollen gels seem to be very promising. Bastide, Leibler,
and Prost introduced anisotropy fluctuations in swollen
gels by considering “frozen blobs” [6]. Later, Onuki [7]
prescribed a phenomenological theory using ideas from
continuum-mechanics and thermodynamics, applied on
coarse-grained scales with the additivity hypothesis for
the elastic and solvent free energy, an hypothesis that is
to some extent questionable [3], but often useful to find
first-order results.

Attempts to predict the effects of heterogeneities for
bulk networks (cross-linked melts) have been given in-
dependently by both of us [8,9], where it has been demon-
strated that the elastic free energy is reduced by strong
heterogeneities whereas the deformation dependence is
not altered. Severe anisotropy effects can be expected if
small-angle-neutron-scattering experiments are per-
formed, leading to the so-called butterfly patterns [5].
These effects are, however, more of a fundamental nature
and give detailed insight to the local structure of the net-
works, rather than equations of state derived from mac-
roscopic free energies.

Another technically very important effect of hetero-
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geneities in cross-link density is given by the strong im-
provement of the ultimate properties in rubber engineer-
ing. Ultimate mechanical properties of elastomers, such
as tensile stress elongation on break, depends sensitively
on the three-dimensional spatial distribution of cross
links throughout the polymer network [4]. So far the
efforts to investigate heterogeneities in cross-link density
have been restricted to the case of static properties of net-
works. A general view of heterogeneous networks and a
more detailed quantitative picture of the small-strain
mechanical properties and scattering behavior is present-
ed by the authors in Ref. [10].

It can be seen already from these introductory remarks
that most of these questions are strongly related to the
dynamic behavior of the networks. We mention especial-
ly the ultimate properties, such as creep experiments or
dynamic stress-to-break experiments. Therefore we in-
vestigate in the present paper consequences of random
heterogeneities on the dynamic behavior of the networks.
We distinguish between short-time segmental dynamics
of chains and cross links and the long-time dynamics.
Both cases have a great physical and practical
significance. It is well known that segmental dynamics
affects the glass-rubber transition of bulk polymers. Ob-
viously, a heterogeneous distribution of relaxation times
caused by the cross-link distribution broadens the distri-
bution zone [11]. A consequence of this dynamical effect
is a violation of the time-temperature-superposition prin-
ciple. This effect is well known if structural hetero-
geneities are introduced artificially when' the rubber is
filled by particles with random structure, e.g., carbon
black. Long-time relaxation processes are typical
features of elastomers and show up in stress-relaxation
and creep experiments. Molecular interpretations of
these effects are based on controversial assumptions
which have been discussed by the authors earlier [12,13].

There exist two extreme kinds of heterogeneities: the
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first are heterogeneities with no scale invariance, i.e., ran-
dom fractals; the second type possesses scale invariance,
i.e., they are fractal at a certain length. They appear dur-
ing different processes of network formation. The first
type has its reasons in the dynamical processes during
cross linking. This can be seen in the following example.
Imagine two chains in a melt carrying functional groups
at some places along the chain. Both chains obey Rouse
or reptation dynamics and a diffusion constant
Dx1/(N% ) (a=1,2). Here v is the monomer friction
coefficient. If two functional groups react and form a
cross link, the result is a branched chain with a diffusion
constant D < 1/(2N°w ™! that is slower. Moreover, the
diffusion constant of the cross-link point is altered also to
give D,~(2/f)v~! where f>2 is the cross-link func-
tionality. The result will be a densely cross-linked region
that forms a piece of the network, in which the cross
links are clustered together. This happens in all regions
of the reactor and the entire sample will have a spatially
varying cross-link density. This intuitive picture suggests
also that heterogeneities do not disappear upon stirring,
before vulcanization. Considerations on the static elastic
properties of heterogeneous networks have been given in
Ref. [10]. It is shown that the main effect of the random
and fractal heterogeneities is to lower the domulus. It
has been noted that the typical deformation dependence
of the free energy BF is not altered by such hetero-
geneities, i.e., it is still given by the classical result [1].

3
BF=1BG 3 A!. (1.1

i=1

This result suggests that the typical stress strain shapes
are not different for heterogeneous and homogeneous net-
works. This has also been the result in Refs. [8,9] and is
implicitly hidden in Onuki’s approach [7]. It has also
been found that this result holds for systems containing
fractal heterogeneities. There, several scaling laws for
the modulus can be predicted; see Ref. [10] for details.
This could, however, be the reason that heterogeneities
cannot be detected easily by static mechanic measure-
ments, since the absolute value of the modulus is very
difficult to detect experimentally.

Similar remarks hold for networks that contain
fractal-type heterogeneities which result in natural per-
colation process, such as end-linking reactions or
diffusion-limited rubber formation. The static effects of
such networks have also been investigated (see Ref. [10]
and references therein). We summarize the results briefly
because of later connections to the dynamics. The model
starts from a number of percolation clusters (made out of
chains). These clusters of different sizes according to the
percolation model link with each other, and the free ener-
gy of such a system is given by

3
BF~1M; > A}, (1.2)
i=1
where M, is the number of interfractal cluster cross-link
points. This number can be estimated from the percola-
tion model since it should be crudely proportional to the
total number clusters. Above the percolation point M is

of the order
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~]p_pc|—(1/a)(r—l) . (1.3)

lp>p.| is the distance from the conversation point.
Since for p—1, M, ~M in the ideal case, M, can be es-
timated to be M, =M |p—p |~V witho =1, =2
for the mean-field theory. Notice that M, ~0 at p =p,.
The elastic modulus for the rubbers near p, obey there-
fore a scaling form G~M,~(p—p, )4=¢£9 Also here
the heterogeneities are difficult to detect, except in exper-
iments that allow the direct access to the structure of the
network and the clusters built in there.

After these introductory remarks on the static effects
of heterogeneities we turn in the remainder of the paper
to the single-chain and collective dynamics of such net-
works. The situation is different when dynamic quanti-
ties are considered, as it is demonstrated in the following
in detail. We have already made simple remarks on the
diffusion constant of network chains or cross links. It
will be demonstrated below that many results can be de-
rived which suggest that heterogeneities can be detected
by dynamic experiments such as quasielastic neutron
scattering, viscoelasticity, or NMR.

The paper is organized as follows: in the next section
we study the segmental dynamics of heterogeneous net-
works. In Sec. III we consider in detail the long-time dy-
namics of heterogeneous rubbers using an analogy with
the Forster transfer. For both subjects, to our
knowledge, no experiments have been carried out and we
will give some predications.

II. SEGMENTAL DYNAMICS OF
HETEROGENEOUS NETWORKS

In the following we present consequences of random
(nonfractal) heterogeneities of the dynamics in networks.
The simplest idea how one can proceed is the use of the
same variational model as has been given by Deam and
Edwards [14]. This has been used successfully to cross-
link diffusion and monomer dynamics in rubbers [15].
This simple model was able to reproduce experimental
data by the Richter-Ewen group [16]. This led us to con-
sider the effective Hamiltonian [9,15]

T f

where R(s) is the chain segment position (s is the arc pa-
rameter), / is the Kuhn segment, and g,=6M /(NI ) is
the localization parameter of a homogeneous network.
The corresponding Langevin equation for the dynamics is
given by [15]

ds—f—‘ Oﬂf R¥s)ds , (.1

3k T
12

dR

1’kT 42
oR
o

3 (s,t)=1f(s,t)

R |
3s?

(2.2)

where f(s,z) is a random force with white-noise
statistics and a correlation function {f(s,t)f(s’,t’'))
=2kpTvd(t —1t")8(s —s’). v is the monomer friction con-
stant. Clearly the localization is determined by the
cross-link distribution M (r). In the case of homogeneous
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networks it is constant. When the cross links are distri-
buted nonuniformly, i.e., in the sample there exist regions
which are cross linked more densely compared to others,
it is reasonable to assume that the localization is also
nonuniform. case [9,10] we assume the g, to be spatially
dependent, i.., containing a random part, ie,
qo(r)=6M(r)/(I’L)=q,+8q,(r). The extra term stems
from the nonuniform cross-link distribution M(r). We
assume further that M(r) is of the form M(r)=M +n(r)
and that the extra term has simple Gaussian statistics.
This assumption is reasonable since the mean cross-link
number M is very large compared to the deviations n(r).
We assume a distribution

(n(r)n(r'))=Ar—r')p(n(r))

=N exp l——z—lA—fd3r n¥(r) l (2.3)

with the usual statistics of vanishing mean value

(n(r))=0 (2.4)
and
(n(r)n(r'))=A8(r—r'), (2.5)

where A is a measure of the strength of the heterogeneity
of the network. This we call in the following the Gauss-
ian heterogeneous network (GHN). We are now in the
position to continue with the study of dynamics of the
GHN. The ansatz generalizes the Langevin equation
that contains a second (random) term, i.e.,

1

Y 12

[g0+8g0(r)])*R(s,t)

R | I%T
ds? 3
=f(s,t) . (2.6)

It has to be noted that the Fourier transform used in (2.6)
acts only on the arclength s on the chain. The spatial
coordinate r itself is a coarse-grained variable that de-
scribes the disorder on a larger scale. It is assumed that
the Gaussian disorder model utilized here is not sensitive
on a local scale where the fluctuation of the cross-link
density depends on the arclength. Here the same model
is used as in the corresponding theory of the static prop-
erties of the GHN [9,10]. Such differential equations are
not very simple to solve in general because its formal
solution is given by

f(q,0) e = 3kpT
iov+e{q*+[qo+8g4(r)]?}’ 12

(2.7)

R(q,0)=

which has to be averaged over the stochastic force f and
the random part of the cross-link density 8¢,(r). In Eq.
(2.7) q is the Fourier conjugate to the contour parameter s
and o is the frequency. For studying the segmental and
the cross-link dynamics, correlation functions of the type

(R(g,0)R(—¢, —0)) =C(qu[8gy(r)])=C (2.8)

are needed. These still depend on the cross-link realiza-
tion 8¢4(r) and have to be averaged after, since the ran-
domness from 8q,(r) is quenched. The average over the
white-noise force f can be carried out simply and the
correlation function C is given by

Clg,0)=

Vol+e2((g2+q3)1+2(q2+q2)8qq(r)+[8gy(r) ]}

(2.9

which is not simple to average over the Gaussian heterogeneity [compare Eq. (2.3)]

8go(r)]?
P(8q,(r))~N exp l— fd3rua—] ] .

(2.10)

One step is to continue by perturbation theory and a resummation, as can be seen in the following example. Expand
Eq. (2.9) to second order in 8¢, (r) where the bare correlation function

1
Vol +elg?+q3)?
0

Co(%w)z

is used. This leads to an expansion

(2.11)

é(qw)=co(4:@)(1_{2(72'*'9(2))5%(’)"“[dqo(’)]}2)00(%(0)'*‘4(42"‘43)Z[Sqo(’)]zcg(q,a))+(higher orders) .

(2.12)

This series can now be averaged term by term and the result is

(€C(g@)) =Cy(qa)[1—ACy(gw)+4(g2+¢3)*A2C,(g,w) + (higher orders)] .

(2.13)

This can be evaluated term by term and a perturbation series of the correlation function for the segmental dynamics

<[R(S,t)"R(O,0)]2>+f—dif—dq—(ff(q’w)ﬂl__e—iqs—im)

2m) Y 2m)

(2.14)
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can be calculated, but it has to be remembered that higher orders A*, A%, etc., contribute. A crude resummation can be

carried out and an approximate form of Eq. (2.13) is given by

1

(C(q,0))=Cylq,0) 1
1+Cylg,w)A

) (2.15)

which resembles the first terms of a continued-fraction
expansion. This can be brought into a more appropriate
form by inverting (2.15) algebraically,

1 1 A

~ = +
Co(q,(l))

’

+A(g2+g3)?

(2.16)

which is a Dyson equation where the last term plays the
role of the self-energy. A closer investigation of this
correlation function shows that the segmental dynamics
become slower by the presence of disorder. The effect of
this correlation function can be worked out by finding the
poles of Egs. (2.15) or (2.16). This predicts the interpola-
tion formula for the dynamic evolution of a segment on
the chain:

([R(s,t)—R(s,0)]?)
172

€
;t
~ S . 217
14 |1+ 38| ale
v v

This formula recovers all limits. For A=0 (no hetero-
geneities) Eq. (2.17) reduces to the results given in Ref.
[15], i.e., the short-time limit is dominated by the ordi-
nary Rouse model for the segmental dynamics which is
R ~t17% At long times the chain localizes and for t — o
it becomes R2~gq, !, which is the known result [15] as
has been shown experimentally by Richter and Ewen
[16]. It is interesting to note that the heterogeneities in-
crease on average the localization parameter and for time
scales

J

14+4(g%+q3)*Cylq,w)A

—

4At?
v

>1 (2.18)

a new effective localization parameter can be defined, i.e.,

A
9oer =95+ - (2.19)
However, the disorder introduces a new time scale
12
v
TA A )

which is proportional to the root of the monomer friction
constant, where enhancement of the localization becomes
relevant. Note that Eq. (2.17) can be verified experimen-
tally directly by measuring the intermediate dynamical
stricture factor S(k), i.e.,

S(k,t)=exp{—1k*([R(s,t)—R(s,0)]?)}

in quasielastic small-angle neutron scattering.

As a short remark we would like to mention that a
more refined (and self-consistent) theory can be produced
when the Martin-Siggia-Rose formalism [17] is used. In
this method quenched averages can be carried out very
simply. This is mentioned here because it demonstrates
the complexity of this problem and that more refined
theories can be produced where the simple results ob-
tained above turn out to be only an approximate limit.
The corresponding generating dynamical functional can
be written as

Z({3,3}8g0)= [8R(qw)8R(go)exp | 3 R(gw)¥(gw)+R(gaT(gw)

9.0

+i3 ﬁ(qa)){iw-i-e(qz)-i—[q0+8qo(r)]2}R(qa))—%lﬁ(qm)lz ,

q,w

(2.21

where fl(qco) are the usual auxiliary Martin-Siggia-Rose fields. The random variable 8g,(r) can now be averaged out
simply since this functional has been constructed in such a way that it is normalized to Z(0,0)=1. The correlation

function C(qw) is given by

8’z
8J(q,0)dJ(—¢q, —w)
and the response function by the analogous expression

; 8z
83(q,0)83(—gq,— )

C(q,0)= =(RR)

Gl(q,0)= =i(RR) .

(2.22a)

(2.22b)
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The complex nature of the problem of dynamics of heterogeneous networks is shown upon averaging over the disorder

8g,(r). The averaged dynamical functional is given by
Z(3,1=(Z({3,7};84))5,,

3 R(g,0)3(q,0)+R(g,0)(g,0)

= [8R(q,0) [ 5R(g,@)e"

Xexp ]S iR(g,0)(io+g*+¢3)R(g,0)

9,0

g5

1
A

Pz

be solved self-consistently, leading to four coupled
integrodifferential equations for the correlation and
response function. This will be analyzed in detail in a
separate work, since it is beyond the scope of this study.
In the following section we proceed with the long-time
relaxation effects of heterogeneities.

III. LONG-TIME DYNAMICS OF (NONFRACTAL)
HETEROGENEOUS NETWORKS

So far we have discussed the segmental dynamics of
chains and cross links embedded in a heterogeneous net-
work. In this section the long-time dynamics of the en-
semble of chains is discussed. This is especially impor-
tant when relaxation experiments are performed, which
measure the dynamic behavior of the modulus. It is well
known that the modulus can be written as G(t)=Gy®(¢)
in general, as long as the cross-link points are constant
during the experiment. The total number of cross-link
points determines Gy, which is the static modulus men-
tioned in the Introduction. For the purpose of studying
dynamic behavior of the modulus, it is enough to concen-
trate on the time-dependent relaxation function ®(z). In
a previous paper we had demonstrated that using a sim-
ple model, the empirical Thirrion-Chasset law [13], can
be derived [12]. This was given by a power-law decay of
the relaxation function, i.e.,

&(t)~t ", 3.1)

where n, can be related to the tube diameter, i.e.,
n,=~(l/a)?, where I is the Kuhn length and a the tube di-
ameter. Note that the ration n, ~(I/a)? appears natural-
ly “everywhere” in polymer dynamics and rubber theory
[18,1-5] and is experimentally accessible. To derive Eq.
(3.1) we used a uniform cross-link density. In the follow-
ing we extend this work to heterogeneous networks.

To do this we adopt a model that is often used to study
relaxation phenomena in disordered systems: the Forster
transfer [19]. The idea for its application to polymer net-
works with inhomogeneities can be summarized as fol-
lows: We consider the network on a simple lattice where
all sites are occupied with polymer units or with a cross-
linking unit. The probability p that a lattice site is occu-
pied by a cross-linking point reads

+ S R(pz)R(—p—z) *°

S R(g,0)R(p,Q)R(—¢,0)R(—p,—Q) |,  (2.23)

IAY

1’=Nc_l ’

where N (>>1) is the number of units per network
chains. The network chains are highly interpenetrated,
i.e., each coil contains many other chains. The spatial
distance between a test junction and a spatial neighbor is
smaller than the average distance between two topologi-
cal neighbors that are connected via a network strand.
The spatial path crosses a large number of cross links and
is therefore longer than the contour length between topo-
logical neighbors. In [12] we argued that, after a distor-
tion of the sample, a cooperative relaxation in the rear-
rangement of the cross-link positions takes place that
leads to the typical anomalous long-time relaxation
behavior. We assume therefore that a characteristic sin-
gle relaxation time 7(R;) of the rearrangement between a
test junction and the spatial neighbor depends on the spa-
tial distance R;. The corresponding single relaxation
function is then

—t/[HR,)
@ (t)~e h (3.2)

For a fixed configuration {R;} of the cross-link positions
we obtain the total relaxation

B((R,},0)=Le "™,

i=1

(3.3)

where the product excludes the test junction. The aver-
age overall configurations of the statistically distributed
cross links give with p <<1 the expression [20,21]

B()=(®({R;},1))(r

z<boexpl—1?2 [l—e_’/[fm‘)]] ] . (3.4)
i

Introducing the cross-link density
m(mz@=za<k—ki) (3.5)

leads to the overall relaxation functional for a given
cross-link density m (R ):
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®(1)=Pgexp {—p [d*Rm(R)(1—e /"R (3.6)

We introduce now a fluctuation n(R) in the cross-link
density for heterogeneous networks, ie.,
M(R)=M+n(R) as before. In the following it is con-
venient to use cross-link densities, which are denoted by
lowercase symbols, e.g., for the mean cross-link density
mo=M /V, etc., where V is the volume of the sample.
Applying the Gaussian distribution, Eqgs. (2.3)-(2.9),
leads to the observable relaxation

®(1)= [ 8(n(RNB(1, {n(R)p({n(R)}) .  (3.7)

Performing the functional integral yields the following
separation:

P()=0,(el1), (3.82)
where
®,(1)=Poexp [—pmofd3R(1—e*t/[ﬂR)1){ ,
(3.8b)

2
@(t)=exp [A;L fd3R(1—e“’/["R”)2 ] )

Only ¢,(t) contains the effects of heterogeneities. @,(¢) is
similar to the relaxation function in the Forster transfer
[20]. The final form of the relaxation function depends
on the form of the single relaxation time 7(R). We con-
sider the two limiting cases of power-law and exponential
decay:

dllJ

d, /2

~N , (3.9a)

R)=r, |7

T(R)ZTOQY(R/”~9Y‘/N , (3.9b)

where N is here the number of Kuhn segments between
two neighbors along the spatial path. These two limiting
cases have a neat physical reason. Equation (3.9a) corre-
sponds to the local segmental dynamics that is relevant
for time scales where the chain segment is not affected by
cross-link constraint. It is simply the diffusion law for a
segment. d, is the corresponding dynamical exponent
(or walk dimension) for the “defect” motion along the po-
lymer chain, i.e., d, =8,4,3 for reptation, Rouse dynam-
ics, or dynamics including hydrodynamic interaction in
swollen gels, respectively. The maximum time of the va-
lidity of Eq. (3.9a) is given by 7,,,~ N, i.e., where transla-
tional motion starts. This time 7, determines also the
crossover time where Eq. (3.9b) starts to become impor-
tant. The exponential increase of the typical relaxation
time is due to the cross-link constraint and has been used
successfully in Ref. [12], and has a similar origin as in
star-branched molecules [22].

Performing the integrals in Eq. (3.8) we obtain for
t /7>>1 the following results: For Eq. (3.9a),
3/d,

To

<I>1(t)=<l>oexp‘—a, , (3.10a)
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@(t)=exp | +a, £ |- 1 (3.10b)
my | To
where the constant « is given by
(3/d,)—1
=2 pm,L [1- = [(1—=2¥% 7"z, g, >3
3 d,
(3.10c)

[[(x) being the gamma function]. Similarly we find for
the second case [Eq. (3.9b)]

P,(1)=Pyexp ‘—Blln3 TL J l , (3.11a)
0
_ Ap . 5|t
@(t)=exp {+B; In> | — | 1, (3.11b)
2’710 To
m
.31’_"'77’1J 30 (3.11c)
14

The anomalous decay function &, was also found in the
Forster transfer model describing defect relaxation in
solids [21]. Equations (3.10b) and (3.11b) indicate that
the form of the time dependence of the long-time relaxa-
tion is not altered by heterogeneities. Hence, Egs.
(3.10a) and (3.10b), and (3.11a) and (3.11b), can be sum-
marized and give for the first case [Eq. (3.9a)]

3/d,
<I>1(t)=<l>oexp|—a — , (3.12a)
To
with
a=a, l-—xi—A— , (3.12b)
4 n,
and x=2(1—2(3/d‘”)-1), i.e., 0<x<1 and x=0 for

d,=3 and x —1 for g— . For the second case [Eq.
(3.9b)]

B(1)=gexp | —Bln’ |- ] (3.13a)
0

—p, 1-L & 3.13b

B=B |1 4 n, (3.13b)

for the number of network chains and therefore
p/(2my)=f/(4n,), where n; is the constant segment
number density of the network. The relations a,8>0
and a<a,, B<P; are always fulfilled for realistic net-
works because A/n;<<1 in all cases. Fluctuations in
cross-link density are always smaller than the average
segment density. Equations (3.12a) and (3.13a) predict a
slowing down of the long-time relaxation behavior.

We finally note that the Thirrion-Chasset law (3.1) is
only a special case of the Forster transfer model for the
case (3.9b). It can be derived under the assumption that
the single relaxation time depends on the topological dis-
tance R =IN}/? between the test junction and its topolog-
ical neighbors [21]. Again we point out that these results
can be compared to experiments, since the creep modulus
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is directly proportional to these correlation functions
®(t), which are calculated above.

IV. DYNAMICS OF NETWORKS
CONTAINING FRACTAL HETEROGENEITIES

The dynamics of fractal structures has become a very
active field [20]. The dynamic scaling of critical gels in
particular has developed quite far [18,23]. It has been
shown that a viscoelastic scaling exponent

o= i (4.1)
ds+2
describes the frequency dependence of the modulus
G(o)~kTw’ 4.2)
and that an Einstein relation of the form
1=Gr, (4.3)

can be established, where 7, is the longest time in the sys-
tem.

When we studied the mechanical properties of fractal-
containing networks we showed that the static scaling re-
lation

kT p
G~—~(p—p. )" (4.4)
&

holds, by employing the percolation model and showing
that only the interfractal connecting cross links contrib-
ute to the elasticity (at least in the low-deformation re-
gime). For the dynamic scaling we expect similar results
as given in Refs. [23,24] at scales less than the correlation
length and £, where the system is fractal. This will take
place at times where a “defect,” i.e., a dynamic excita-
tion, will have explored the fractal heterogeneity of size
7,. But the heterogeneity is collapsed, i.e., saturated, and
forms a ball of size £~ m, where m is the total number of
monomers in the heterogeneity. The time involved is
here just given by the dimension d,, =2d,/d; where d, is
the spectral dimension (or connectivity dimension
[25-27] with an upper bond given by d,=4.5. For
longer times the connectivity of the fractals matters and
assuming a “tennis net” where the net elements are the
fractal heterogeneities one returns to the classical
behavior G(w)~w? Thus we expect frequency behavior
of the modulus that is ruled by o =0.6 for times less than
74~E&3> are classical Rouse behavior for time t>r7,.
Again these predictions can be checked experimentally
by a frequency sweep in a mechanical spectrometer.

V. DISCUSSION AND FINAL REMARKS

We have discussed several possibilities of how hetero-
geneities in cross-linked polymer melts can affect dynam-
ic properties. Local methods such as neutron scattering
in statics and NMR, dielectric, or mechanical spectrosco-
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py in dynamics are well suited for the determination of
heterogeneity effects on a dynamical experiment. It is
also important to distinguish between two kinds of
heterogeneities: fractal and random inhomogeneities.
Both behave substantially differently and some complete-
ly different methods have to be used. Let us summarize
both typical results on their physical consequences.

In Sec. II we have shown the significant effect of ran-
dom heterogeneities on the segmental dynamics. The
main result is given in Eq. (2.17). It can be summarized
by

172
at

1+ V' 1+ Abt?+qlat

([R(s,t)—R(5,0)]?) =

This result contains all known cases. For example, if the
disorder is not important, i.e., A=0, the chain segment
follows Rouse dynamics for short times (ag3t < 1) and be-
comes localized for larger times. For heterogeneous sam-
ples the disorder is relevant. The disorder introduces a
new characteristic time

e
A A *
It is an intermediate time scale, relevant for the time in-

terval

Lot

a q5a

Again, the localization takes place at later times. Such
results can be checked experimentally by quasielastic
small-angle neutron scattering, NMR, or light scattering.
Section III used the Forster transfer to study the dynamic
behavior of the modulus. Such considerations are of im-
portance when creep measurements are performed. By
Fourier transform of the decay function ®(z) the
mechanical spectrum of the modulus can be compared to
mechanical data from dynamic mechanic measurements.
Such Fourier transforms are naturally very hard when
slow relaxation such as stretched exponentials or loga-
rithms in the exponents are dominating the dynamics.
Nevertheless it is known that such decay functions
broaden the relaxation significantly, comparable to the
nonexponential decay in glass-forming liquids (see, for ex-
ample, [28] for the latest review collection). Fractal
heterogeneities can be detected along the same lines by
mechanical spectroscopy. Whether one can distinguish
between scaling function of fractal nature and those
occurring from random heterogeneities by such experi-
ments alone has to be questionable. We expect that
different information about the cross-linking process and
scattering data has to be taken into account.
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